Improving Color Constancy Using Indoor-Outdoor Image Classification

نویسندگان

  • Simone Bianco
  • Gianluigi Ciocca
  • Claudio Cusano
  • Raimondo Schettini
چکیده

In this work, we investigate how illuminant estimation techniques can be improved, taking into account automatically extracted information about the content of the images. We considered indoor/outdoor classification because the images of these classes present different content and are usually taken under different illumination conditions. We have designed different strategies for the selection and the tuning of the most appropriate algorithm (or combination of algorithms) for each class. We also considered the adoption of an uncertainty class which corresponds to the images where the indoor/outdoor classifier is not confident enough. The illuminant estimation algorithms considered here are derived from the framework recently proposed by Van de Weijer and Gevers. We present a procedure to automatically tune the algorithms' parameters. We have tested the proposed strategies on a suitable subset of the widely used Funt and Ciurea dataset. Experimental results clearly demonstrate that classification based strategies outperform general purpose algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Static Filtered Sky Color Constancy

In Computer Vision, the sky color is used for lighting correction, image color enhancement, horizon alignment, image indexing, and outdoor image classification and in many other applications. In this article, for robust color based sky segmentation and detection, usage of lighting correction for sky color detection is investigated. As such, the impact of color constancy on sky color detection a...

متن کامل

Indoor vs outdoor classification of consumer photographs using low-level and semantic features

Scene categorization to indoor vs outdoor may be approached by using low-level features for inferring high-level information about the image. Low-level features such as color and texture have been used extensively in image understanding research, however, they cannot solve the problem completely. In this paper, we propose the use of a Bayesian network for integrating knowledge from low-level an...

متن کامل

Effective Combining of Color and Texture Descriptors for Indoor-outdoor Image Classification

Although many indoor-outdoor image classification methods have been proposed in the literature, most of them have omitted comparison with basic methods to justify the need for complex feature extraction and classification procedures. In this paper we propose a relatively simple but highly accurate method for indoor-outdoor image classification, based on combination of carefully engineered MPEG-...

متن کامل

Indoor and Outdoor Scene Classification Method Based on Fourier Transform

In this paper, a method for indoor and outdoor scene classification is proposed based on the spectrum information of Fourier transform. Firstly, the image is divided into five partitions. The color, texture, and spectral information of each partition are extracted as feature vector. Each partition has a separate image feature vectors, so the image can be represented by this set of features. For...

متن کامل

Indoor Outdoor Scene Classification in Digital Images

In this paper, we present a method to classify real-world digital images into indoor and outdoor scenes. Indoor class consists of four groups: bedroom, kitchen, laboratory and library. Outdoor class consists of four groups: landscape, roads, buildings and garden. Application considers real-time system and has a dedicated data-set. Input images are pre-processed and converted into gray-scale and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

دوره 17 12  شماره 

صفحات  -

تاریخ انتشار 2008